IMPACT OF PEDOT: PSS AND LIGHT SOAKING ON PASSIVATION PROPERTIES OF ULTRATHIN ATOMIC LAYER DEPOSITED TiO\textsubscript{x} LAYERS

Gurleen Kaur1,2, Neeraj Dwivedi1, Zheng Xin2, Baochen Liao2, Zhi Peng Ling2, Rolf Stangl2, Aaron Danner1

1Spin and Energy Lab, Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
2Solar Energy Research Institute of Singapore, Singapore.

Ultrathin titanium oxide (TiO\textsubscript{x}) is known to be a successful dielectric material for its application as an electron selective passivated contact in a silicon based solar cell; using atomic layer deposited TiO\textsubscript{x} on rear side, solar cell efficiencies above 22\% have been achieved. Recently, silicon oxide (SiO\textsubscript{x})/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) contacts have resulted in high efficiency of above 20\%, having the advantage of being a low temperature, low cost organic alternative to SiO\textsubscript{x}/poly-Si contacts. Substituting the SiO\textsubscript{x} tunnel layer by a SiO\textsubscript{x}/TiO\textsubscript{x} stack can further improve contact passivation properties. This is the motivation behind this work. Currently, there are very few reports on the passivation properties of ultrathin ALD TiO\textsubscript{x} films, but the impact of light illumination on the passivation properties of ultra-thin ALD TiO\textsubscript{x} capped with PEDOT:PSS remains unexplored. According to our initial findings, a correspondingly passivated lifetime sample shows even enhanced performance under solar illumination. Using ALD grown ultrathin TiO\textsubscript{x} layers (0.5 – 2 nm) on –OH terminated (SiO\textsubscript{x}), n-type c-Si Cz wafers, it was observed that the introduction of PEDOT: PSS layer increases the lifetime of SiO/0.5 nm thick TiO\textsubscript{x} by almost 70\% or even 171\% (under light soaking for 15 min) as shown in Figure 1(a). We performed these experiments on 1, 1.5 and 2 nm thick ALD TiO\textsubscript{x} coated with PEDOT:PSS and observed a similar trend. Interestingly, while a 15 min light soaking does not increase lifetime for uncapped SiO\textsubscript{x}/ALD TiO\textsubscript{x} layers, the observed 171\% increase of lifetime of PEDOT:PSS capped samples even increases after a subsequent storage in the dark, see Fig. 1b (top). This can be likely attributed to charge accumulation within the PEDOT:PSS layers, as an increase in lifetime for the capped samples is also observed without light soaking (dark storage only), see Fig. 1b (bottom). A longer light soaking (up to 5 days) will result in a similar lifetime increase for uncapped SiO\textsubscript{x}/ALD TiO\textsubscript{x} lifetime sample, but this increase is lost as soon as they are stored in the dark, see Fig. 1c. Thus, it is recommended to use the SiO\textsubscript{x}/TiO\textsubscript{x} tunnel layers in combination with some (PEDOT:PSS) capping layer. Further, microscopic and spectroscopic characterization is planned to correlate the electrical properties with structural properties/bonding configurations.

![Figure 1: Effective lifetime, τ_{eff} (measured at $\Delta n = 10^{15}$ cm$^{-3}$) for symmetrical lifetime samples (a) using 0.5 nm thick TiO\textsubscript{x}, TiO\textsubscript{x} capped with PEDOT:PSS, and TiO\textsubscript{x} capped with PEDOT:PSS and light soaked for 15 min. (b)-(c) illustrates comparison of no light soaking, 15 min and 5 day continuous light soaking of TiO\textsubscript{x} and TiO\textsubscript{x} capped with PEDOT:PSS samples for 0.5 nm thick TiO\textsubscript{x}. Please note that during dark storage samples were stored in a dry cabinet.](image-url)