The local recombination current density $j_{0,loc}$ is an important parameter to quantify local recombination of charge carriers in solar cells e.g. due to metallization. Different methods to quantify $j_{0,loc}$ have been proposed in literature by e.g. Fellmeth EnerProc8 2011; Wong IEEE JPV5 2015. In our contribution we propose and compare three photoluminescence imaging (PLI) based methods (area fraction variation, constant signal approach, two-diode fit) to quantify $j_{0,loc}$. We carefully review all assumptions needed for the methods and analyze the impact of deviations from the assumptions on the final result using error propagation. We exemplarily present experimental results on a set of samples, on which the methods are applied. We focus on the area fraction variation method only in this abstract.

Method: Analogously to the method proposed by Fellmeth et.al., samples with different area fraction of locally increased recombination F are needed. A derivation yields the following equation:

$$\frac{1}{\varphi} = \frac{1}{j_\gamma q(1-R)C} (j_{0,b} + j_{0,e}) + \frac{1}{j_\gamma q(1-R)C} (j_{0,loc} - j_{0,e}) * F$$

with φ being the PL-signal of the sample, C being the conversion factor from PL-signal to quasi fermi level split $\Delta \eta$ due to $\varphi = C * \exp(\Delta \eta/kT)$, $j_{0,b}$ and $j_{0,e}$ being the base and emitter dark saturation current densities, j_γ being the incident photon flux on the sample during the PL measurement and R being the sample’s reflectance at the PL excitation wavelength. Equation (1) can be interpreted as a linear equation with slope m and y-intercept b, and $j_{0,loc}$ follows via:

$$j_{0,loc} = m_{j_\gamma} q(1-R)C + j_{0,e}.$$

Assumptions and error propagation: Four major assumptions need to be pointed out clearly and reviewed carefully for the above method. 1.) There is only one well-defined value of $j_{0,loc}$. 2.) The sample behaves like an ideal diode. $j_{rec} = j_{0,e} \Delta \eta/kT$ is assumed. 3.) The quasi fermi level split $\Delta \eta$ is constant throughout the sample. In other words no contrasts should be visible in the PL images. 4.) The investigated wafers only differ in F. Any corruption of these assumptions will lead to an error in the slope m and propagate accordingly in $j_{0,loc}$. An analytic error propagation leads to the simplified expression

$$\frac{\Delta j_{0,loc}}{j_{0,loc}} = \frac{\Delta C}{C} + \frac{\Delta m}{m},$$

for the relative error in $j_{0,loc}$. Determination of ΔC and Δm will be part of the final contribution.

Experiment: A set of samples with different F-values has been prepared (see Fig 1a). Locally increased recombination was realized via a line-wise laser opening of the ARC layer with different line distances and a fixed line width of 16 μm. Fig 1b shows a PL-image of a sample with 1500 μm line distance. The visibility of the dark lines due to locally increased recombination indicates a deviation from assumption 3. Fig 1c shows the inverse PL signal plotted against F. The deviation of the three marked points from the line can be explained by a corruption of assumption 3 due to line distances larger than the diffusion length.

Fig 1: a) sketch of prepared samples; b) Part of a PL image (1500 μm line distance); c) plot of inverse PL signal vs. F

Analysis of the data with the above method yields a value of $j_{0,loc} = 2700 \pm 240 \text{ fA/cm}^2$ for the samples. We conclude that depending on the technology used, which induces locally increased recombination, the PLI-based methods are capable of a surprisingly precise quantification of $j_{0,loc}$. One main application is the determination of metal recombination current densities to quantify recombination behavior of metal pastes.