Area: Crystalline and Thin Film Solar PV.

CHEMICAL LY RESISTIVE AND HIGH QUALITY TRASPARENT SILICON NITRIDE PASSIVATION LAYERS FOR BACK-CONTACT CRYS TALLINE SILICON SOLAR CELLS

Huynh Thi Cam Tu, Koichi Koyama, Cong Thanh Nguyen, Shigeki Terashima, Takeo Konishi, Keisuke Ohdaira, Hideiki Matsumura

Japan Advanced Institute of Science and Technology, Japan

The world top three records of efficiency of crystalline-silicon (c-Si) solar cells, 26.6%, 26.3% and 25.6% are all prepared by the amorphous-silicon (a-Si)/c-Si heterojunction back contact (HBC) structures [1, 2]. For further improvement of solar cell efficiency, transparent and high quality films are required as front passivation layers. In addition, for making fabrication process of back-contact electrodes easy, the front passivation films have to be tolerable in chemical etching process for making back-contact structures. Conventionally, silicon nitride (SiN$_x$)/a-Si stacked layers are considered as the best passivation structure for c-Si, because one can achieve a surface recombination velocity (SRV) of less than 0.2 cm/s [3, 4]. However, by using the a-Si layer light with wavelength less than 700 nm can be easily absorbed [5], which results in limitation of HBC solar cells’ efficiency. To avoid this, there are many works which report on inserting the SiO$_x$, Al$_2$O$_3$ or Si-rich-SiN$_x$ layer instead of using the a-Si [5, 6]. In this study, we present a novel and facile structure which is stoichiometric SiN$_x$/SiN$_x$ double layers for passivating surface of c-Si. The utilization of stoichiometric SiN$_x$ is to minimize the absorption of light. The SiN$_x$ layers in this work were fabricated by catalytic chemical vapor deposition (Cat-CVD) which is known as hot-wire CVD [7].

Figure 1 (a) shows structure of the sample for measuring effective carrier lifetime (τ_{eff}). The 290-µm-thick n-type c-Si wafer with bulk carrier lifetime of about 9 ms was used. Before depositing the SiN$_x$ layers the c-Si was annealing at 350 °C. Then the SiN$_x$ first layer with thickness of about 15 nm was deposited at substrate temperature (T_{sub}) less than 150 °C, while the SiN$_x$ second layer with thickness of 80 nm was formed at T_{sub} of 250 °C. The τ_{eff} of these samples as deposited and after annealing at 350 °C is shown in Fig. 1 (b). As can be seen from this figure, carrier lifetimes of n-c-Si increase to 6 ms when the SiN$_x$ first layers were fabricated at T_{sub} below 100 °C. Comparing with Si-rich-SiN$_x$/SiN$_x$ stacked layers [5], the SiN$_x$ double layers exhibit better passivation quality, particularly τ_{eff} is improved for more than 1 ms. Figure 1 (c) also shows the etching rate of this SiN$_x$ double structure in hydrofluoric acid solution with concentration of 5% (5% HF). The etching rate is much smaller than that of plasma enhanced chemical vapor deposition (PECVD) SiN$_x$ and appears usable in fabrication process without any protecting films.

In summary, the stoichiometric SiN$_x$ double layers, prepared by Cat-CVD, with high optical transparency, good chemical resistivity and enough passivation quality are very promising structure to obtain high efficiency HBC solar cells.

References