CIGS thin film photovoltaic comprises a very thin copper indium-gallium selenide (CIGS) semiconductor absorber layer. CIGS PV has a potential as a thin film photovoltaic devices due to high absorption coefficient, appropriate band gap and outstanding electro-optical properties. Recent research and development devoted to flexible thin film solar cells has focused on substituting the rigid glass substrates. Flexible PV is advantageous, exhibiting a high potential in reducing fabrication costs, easy to application such as building, leisure, national defense materials. Flexible CIGS photovoltaics modules requires with high efficiency, low cost and a long and predictable lifetime to building application. But reliability of flexible CIGS PV is still limited. Lifetime of field exposed modules cannot yet be easily predicted. In this study, we will analysis the cell performances of field exposed flexible CIGS PV modules and simultaneously exposed modules to damp heat.