INTERDIGITATED BACK-CONTACT SILICON HETEROJUNCTION SOLAR CELL FOR LIQUID PHASE CRYSTALLIZED SILICON ON GLASS WITH 14.2% EFFICIENCY

Cham Thi Trinh1*, Natalie Preissler1,2, Paul Sonntag1, Martin Muske1, Martina Trahms1, Bernd Rech1, Daniel Amkreutz1

1 Institute for Silicon Photovoltaics / Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany, 2 PVcomB / Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany

Email: cham.trinh@helmholtz-berlin.de

Liquid phase crystallization of Si on glass is a promising technique to produce high quality multicrystalline Si with less cost and energy consumption compared to other conventional Si cells [1]. It has been demonstrated that an open circuit voltage (V_{oc}) of up to 652 mV and an efficiency (η) up to 13.2 % can be achieved for interdigitated back-contact silicon heterojunction (IBC-SHJ) cells of 13 µm n-type LPC-Si crystallized by using a line-shape CW-diode laser [2]. However, limitation of effective diffusion length (L_{eff}) (<30 µm) causes a short circuit current loss of 11 % at back surface field (BSF) region. In this work, we focus on optimization of geometry of IBC cell, particularly, variation BSF width (W_{BSF}). TCAD-SentaurusTM tool was used to simulate IBC cell performance. A relevant front surface recombination velocity (SRV_{front}) of 200 cm/s and bulk carrier lifetime (τ) of 1 µs were used to simulate for doping concentration (N_D) of 8x10^16 cm^-3. The result shows that for the current state of the absorber quality W_{BSF} of 60 µm is optimum value to get a high efficiency cell, as shown in Figure 2. In experiment, we fabricated real IBC-SHJ cells with W_{BSF} of 60, 120 and 240 µm. SiO$_2$/SiNx/SiO$_2$ and SiO$_2$/SiNx/SiNx$_2$ stacked layer with SiNx$_2$O$_x$ layer prepared by N$_2$O plasma treatment were used as intermediate layers. Figure 3 shows J-V curves of real IBC-SHJ cells with various W_{BSF}. An efficiency as high as 14.2% can be achieved for 13 µm-thick n-type LPC-Si. This value can be equivalent to state of the art a-Si:H/µc-Si:H/µc-Si:H triple junction cell [3]. The best η obtained for W_{BSF} of 120 µm might be due to this cell locates on a better grain or less boundary area compared to cell with W_{BSF} of 60 µm. A V_{oc} up to 661 mV, which is comparable to V_{oc} of the best multicrystalline Si cell, can be reached [4]. High fill factor (FF) of 75% was obtained owing to low contact resistance. These remarkable results were obtained thanks to improvement in passivation technique for front surface and absorber quality. By 2D-simulation, a SRV_{front} of 100 cm/s and τ of 1.16 µs, which correspond to L_{eff} of 26 µm, were determined for the absorber. This study indicates the high potential of LPC-Si on glass in thin film solar cell application.

Figure 1. Cross sectional structure of an IBC cell.

Figure 2. Simulated efficiency at various W_{BSF}.

Figure 3. J-V curves of real IBC cells with various W_{BSF}.